A SHORT PROOF OF A THEOREM ON COMPLEX LINDENSTRAUSS SPACES

by A. K. ROY

ABSTRACT

A short proof is given of a theorem of Lima which asserts that a Banach space A with the property that every family of four balls in A with the weak intersection property has a non-empty intersection, is a Lindenstrauss space, i.e. A^* is isometric to an $L^1(\mu)$ -space.

1. Introduction

Let A be a Banach space defined over the complex scalars C. If B(x, r) denotes the closed ball (in A) with centre at x and of radius r, we say that A is an E(4) space if, given a family $\{B(x_k, r_k)\}_{k=1}^4$ of 4 balls with the weak intersection property, i.e.

$$\bigcap_{k=1}^{4} B(\phi(x_k), r_k) \neq \emptyset \quad \forall \phi \in A^*, \|\phi\| \leq 1,$$

then

$$\bigcap_{k=1}^{4} B(x_k, r_k) \neq \emptyset$$

It was conjectured by Hustad [3], and proved by Lima [4], that the dual of an E(4) space is isometric to an $L^{1}(\mu)$ -space.

The object of this note is to provide a quick proof of this result using the oftquoted Hirsberg-Lazar criterion [2] for closed subspaces of $C_c(X)$ (containing the constants and separating the points of X, a compact Hausdorff space) to be Lindenstrauss spaces, and the following property of E(4) spaces (proved in [4] for a formally larger class of spaces):

THEOREM 1.1. Let A be a complex Banach space. Denote by $H^4(A^*)$ the subspace

Received May 15, 1980

$$\left\{ (x_1, x_2, x_3, x_4) \in (A^*)^4 : \sum_{k=1}^4 x_k = 0 \right\}$$

of $(A^*)^4$, the 4-fold product of A^* with itself, where $(A^*)^4$ is equipped with the norm

$$\|(x_1, x_2, x_3, x_4)\| = \sum_{k=1}^{4} \|x_k\|$$

If A is an E(4)-space, then every element (x_1, x_2, x_3, x_4) of $H^4(A^*)$ can be expressed as $\sum_{j=1}^{4} (y_{j1}, y_{j2}, y_{j3}, y_{j4})$ where

- (i) $||x_k|| = \sum_{j=1}^4 ||y_{jk}||$ for each k,
- (ii) each $(y_{i1}, y_{i2}, y_{i3}, y_{i4}) \in H^4(A^*)$ and has at most 3 non-zero components.

We should remark that the proof in [4] of the result that E(4) spaces are L^1 -preduals, is quite different and does not use the Hirsberg-Lazar theorem quoted above. An alternative derivation has been suggested by Lima [5] from the proof of his result that E(3) spaces are also L^1 -preduals but the arguments in [5] are quite difficult.

2. Main theorem

Let A be an E(4) space. By the device employed in [5, page 339], it is no loss of generality to assume that A is a closed subspace (in the supremum norm) of $C_c(X)$, for some compact Hausdorff space X, that $1 \in A$ and that A separates the points of X. Let

$$S = \{\phi \in A^* : \|\phi\| = \phi(1) = 1\}$$

be the state space of A. By theorem 2 in [2], it is enough to verify that $\operatorname{conv}(S \cup -iS)$ is a (Choquet) simplex, and this will follow immediately once we have checked that (i) S is split in $\operatorname{conv}(S \cup -iS)$ and (ii) S is a simplex.

PROOF OF (i). Let

$$\lambda_1 p_1 - (1 - \lambda_1) i q_1 = \lambda_2 p_2 - (1 - \lambda_2) i q_2$$

where $0 < \lambda_1$, $\lambda_2 < 1$, and p_1 , p_2 , q_1 , $q_2 \in S$. As $1 \in A$, S is always a "parallel" face of conv $(S \cup -iS)$, i.e. $\lambda_1 = \lambda_2$, and it suffices to check that $p_1 = p_2$.

By Theorem 1.1, we can write

$$\begin{aligned} (\lambda_1 p_1, -\lambda_1 p_2, -(1-\lambda_1) i q_1, (1-\lambda_1) i q_2) &= (0, z_{12}, z_{13}, z_{14}) + (z_{21}, 0, z_{23}, z_{24}) \\ &+ (z_{31}, z_{32}, 0, z_{34}) + (z_{41}, z_{42}, z_{43}, 0), \end{aligned}$$

where each of the terms on the right belongs to $H^4(A^*)$ and we have

(1)
$$\lambda_1 p_1 = z_{21} + z_{31} + z_{41}, \qquad \lambda_1 = ||z_{21}|| + ||z_{31}|| + ||z_{41}||,$$

(2)
$$-\lambda_1 p_2 = z_{12} + z_{32} + z_{42}, \qquad \lambda_1 = ||z_{12}|| + ||z_{32}|| + ||z_{42}||,$$

(3)
$$-(1-\lambda_1)iq_1 = z_{13} + z_{23} + z_{43}, \qquad 1-\lambda_1 = ||z_{13}|| + ||z_{23}|| + ||z_{43}||,$$

(4)
$$(1-\lambda_1)iq_2 = z_{14} + z_{24} + z_{34}, \qquad 1-\lambda_1 = ||z_{14}|| + ||z_{24}|| + ||z_{34}||.$$

Let \tilde{S} be the cone generated by the face S of A_1^* , the dual ball of A. As facial cones are hereditary, we see from (1) that z_{21} , z_{31} , $z_{41} \in \tilde{S}$. Similarly, we see from (2)-(4) that $-z_{12}$, $-z_{32}$, $-z_{42} \in \tilde{S}$, iz_{13} , iz_{23} , $iz_{43} \in \tilde{S}$ and $-iz_{14}$, $-z_{24}$, $-iz_{34} \in \tilde{S}$. On adding (3) and (4),

$$(1 - \lambda_1)i(q_2 - q_1) = (z_{13} + z_{14}) + (z_{23} + z_{24}) + z_{43} + z_{34}$$
$$= (-z_{12}) - z_{21} - i(iz_{43}) + i(-iz_{34})$$

and evaluating these functionals at 1, we get

$$0 = ||z_{12}|| - ||z_{21}|| - i(||z_{43}|| - ||z_{34}||).$$

Hence

(5)
$$\begin{cases} \|z_{12}\| = \|z_{21}\|, \\ \|z_{34}\| = \|z_{43}\|. \end{cases}$$

Similarly, by adding (1) and (3), we have

(6)
$$\begin{cases} \lambda_1 = \| z_{31} \| + \| z_{42} \|, \\ 1 - \lambda_1 = \| z_{13} \| + \| z_{24} \|, \end{cases}$$

and on adding (1) and (4), we get

(7)
$$\begin{cases} \lambda_1 = \| z_{32} \| + \| z_{41} \|, \\ 1 - \lambda_1 = \| z_{14} \| + \| z_{23} \|. \end{cases}$$

From (6),

$$1 = ||z_{13}|| + ||z_{24}|| + ||z_{31}|| + ||z_{42}||$$

= $||z_{13}|| + ||z_{21} + z_{23}|| + ||z_{31}|| + ||z_{41} + z_{43}||$
 $\leq ||z_{13}|| + (||z_{21}|| + ||z_{23}||) + ||z_{31}|| + (||z_{41}|| + ||z_{43}||)$
= $\lambda_1 + (1 - \lambda_1)$ (from the second equations in (1) and (3))
= 1.

It follows that

$$||z_{21} + z_{23}|| = ||z_{21}|| + ||z_{23}||,$$

 $||z_{41} + z_{43}|| = ||z_{41}|| + ||z_{43}||,$

and hence

(8)
$$\begin{cases} \left\| z_{42} \right\| = \left\| z_{41} \right\| + \left\| z_{43} \right\|, \\ z_{24} \right\| = \left\| z_{21} \right\| + \left\| z_{23} \right\|, \end{cases}$$

Equating (7) and (2),

$$\lambda_1 = \|z_{41}\| + \|z_{32}\| = \|z_{12}\| + \|z_{32}\| + \|z_{42}\|$$

and we have, from (8),

$$||z_{41}|| = ||z_{12}|| + ||z_{42}||$$
$$= ||z_{12}|| + ||z_{41}|| + ||z_{43}||$$

Thus, $z_{12} = z_{43} = 0$ and (5) gives that $z_{21} = z_{34} = 0$. Therefore

$$\lambda_1 p_1 = z_{31} + z_{41},$$
$$-\lambda_1 p_2 = z_{32} + z_{42},$$

giving that

$$\lambda_1(p_1 - p_2) = (z_{31} + z_{32}) + (z_{41} + z_{42})$$
$$= -z_{34} - z_{43}$$
$$= 0,$$

and we can conclude that $p_1 = p_2$ as required.

PROOF OF (ii). S being w* compact, the cone \tilde{S} is locally compact. Moreover, as a simple consequence of Theorem 1.1 (see lemma 2.1 in [4]), \tilde{S} has the Riesz decomposition property and hence the directed vector space $\tilde{S}-\tilde{S}$ has the Riesz interpolation property by proposition II.3.1 in [1]. By proposition II.3.2. in [1], $\tilde{S}-\tilde{S}$ is a vector lattice, i.e. S is a simplex.

References

1. E. Alfsen, Compact convex sets and boundary integrals, Ergebnisse Math. Grenzgebiete, Bd. 57, Springer-Verlag, Berlin and New York, 1971.

2. B. Hirsberg and A. Lazar, Complex Lindenstrauss spaces with extreme points, Trans. Amer. Math. Soc. 186 (1973), 141-150.

3. O. Hustad, Intersection properties of balls in complex Banach spaces whose duals are L_1 -spaces, Acta Math. 132 (1974), 283–313.

4. A. Lima, Complex Banach spaces whose duals are L₁-spaces, Israel J. Math. 24 (1976), 59-72.

5. A. Lima, An application of a theorem of Hirsberg and Lazar, Math. Scand. 38 (1976), 325-340.

STATISTICS AND MATHEMATICS DIVISION

INDIAN STATISTICAL INSTITUTE CALCUTTA 700 035, INDIA