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A SHORT PROOF OF A THEOREM ON 
COMPLEX LINDENSTRAUSS SPACES 

BY 

A . K .  R O Y  

ABSTRACT 

A short proof is given of a theorem of Lima which asserts that a Banach space A 
with the property that every family of four balls in A with the weak intersection 
property has a non-empty  intersection, is a Lindenstrauss  space, i.e. A *  is 

isometric to an Ll(/z)-space. 

1. Introduction 

Let A be a Banach space defined over the complex scalars C. If B(x, r) 

denotes the closed ball (in A)  with centre at x and of radius r, we say that A is an 

E(4) space if, given a family {B(xk, rk)}~ of 4 balls with the weak intersection 

property, i.e. 

k = l  

then 

B(xk, rk)~O 
k = l  

It was conjectured by Hustad [3], and proved by Lima [4], that the dual of an 

E(4) space is isometric to an Ll(#)-space. 
The object of this note is to provide a quick proof of this result using the oft- 

quoted Hirsberg-Lazar criterion [2] for closed subspaces of Cc (X) (containing 

the constants and separating the points of X, a compact Hausdortt space) to be 

Lindenstrauss spaces, and the following property of E(4) spaces (proved in [4] 

for a formally larger class of spaces): 

THEOREM 1.1. Let A be a complex Banach space. Denote by H 4 (A*) the 

subspace 
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(x,,x2, x3,x,)~(A*)4: xk =0  

of (A ,)4, the 4-fold product of A * with itself, where (A ,)4 is equipped with the 

norm 
4 

II(x,,x2,x3,x4)ll= IIxkll. 

I f  A is an E(4)-space, then every element (x,, x2, x3, x4) of H 4 (A *) can be 

expressed as E~=I (Yi~, Yi2, Yi3, yj4) where 

(i) ]IX k [[ = '~;=1 []Yik [1 for each k, 
(ii) each (Yn, Yi2, Yi3, )/4) E H4(A *) and has at most 3 non-zero components. 

We should remark that the proof in [4] of the result that E(4) spaces are 

LLpreduals,  is quite different and does not use the Hirsberg-Lazar  theorem 

quoted above. An alternative derivation has been suggested by Lima [5] from 

the proof of his result that E(3) spaces are also L 1-preduals but the arguments in 

[5] are quite difficult. 

2. Main theorem 

Let A be an E(4) space. By the device employed in [5, page 339], it is no loss 

of generality to assume that A is a closed subspace (in the supremum norm) of 

Cc(X), for some compact HausdortI space X, that 1 E A and that A separates 

the points of X. Let 

S = {4, E A*:  limb [I = ~b(1) = 1} 

be the state space of A. By theorem 2 in [2], it is enough to verify that 

conv ($ U - iS) is a (Choquet) simplex, and this will follow immediately once we 

have checked that (i) S is split in conv (S U - iS) and (ii) S is a simplex. 

PROOF OF (i). Let 

Z , p , -  (1 - Z i)iq, = Z2p2- (1 - A:)iq2 

where 0 < hi, hz < 1, and p~, p2, ql, q: E S. As 1 E A, S is always a "parallel" face 

of conv (S U - iS), i.e. A1 = A2, and it suffices to check that p, = p2. 

By Theorem 1.1, we can write 

(Alp1, - A~p2, - (1 - h~)iq~, (1 - Al)iq2) = (0, zn, z~3, z14) + (z2~, 0, z23, z24) 

+ (Z31, Z32, 0, Z34) "31- (Z41, Z42, Z43, 0), 
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where  each of the terms on the right belongs t o  H 4 ( A * )  and we have 

(1) 

(2) 

(3) 

(4) 

hzp~ = z21 ÷ z31 ÷ z41, 

- A l p 2  = z 1 2 +  z 3 2 +  z42, 

- ( 1  - h ~ ) i q ,  = z,3+ z23 ÷ z43, 

(1 - A~)iq2 = z~4+ z24+ z34, 

/~1 "~" [[Z=lll + [[ Z31[[ ÷ I[Z41[I, 

~' = [I Z~211 + II Z~211 + IIZ'~II, 

1 -- A, = [[ Z131[ ÷ II Z=~II + II z4311, 

1 - ,/~1 = [I z,,ll + [1 z=411 + [[ z~4ll. 

43 

H e n c e  

(5) 

0 = II z ,=l l -  II z~l l l -  i (11 z ,3[[-  II z~41f). 

llz,211 = IIz2,11, 
IIz~ll Iiz4311. 

Similarly, by adding (1) and (3), we have 

(6) f /~1 = II z3,11 + II z,=ll, 
/ 1 - , ~ ,  t l z . l l+  IIz=,ll, 

and on adding (1) and (4), we get 

(7) f A1 = II z3=ll + II z4~ll, 
1 l - A ,  [[z,,H + Hz23[[. 

F rom (6), 

1 = I1 z.II +/I z2411 + [I z3111 + II z4=l[ 

= tl Z 13 1[ ÷ II Z21 AI- Z23 I1 ÷ 11 z31 [I ÷ I[ z41 ÷ z43 I[ 

---- II z .  II + (11 z2, II + 11 z=3 II) + II z3~ II + (11 z, ,  II + I1 z43 II) 

= h~ + (1 - hi) (from the second equat ions  in (1) and (3)) 

= 1 .  

Let  S be the cone genera ted  by the face S of A *~, the dual bali of A. As facial 

cones are heredi tary ,  we see f rom (1) that z2l, z3,, z4, E S. Similarly, we see from 

(2)-(4) that - zl:, - z3z, - z42 ~ S, iz,3, izz3, iz43 E S and - iz,4, - z24, - iz34 E S. 

On adding (3) and (4), 

(1 - h l ) i ( q 2  - q l )  = (z13 + Z,4) + (Z23 Al- Z24) "[- Z43 -[- Z34 

= ( - z ,2 )  - z z l  - i ( i z43)  + i ( - iz34) 

and evaluating these functionals at 1, we get 
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It follows that 

and hence 

(8) 

Equating (7) and (2), 

A. K. ROY 

[Iz=~ + z~[I = Ilz=l[[ + IIz~ll, 

11z41 + z4311 = I[z4tll + I[z4311, 

{ll z4~ = z , , l l +  z 4 ~ ,  
11Z24 = Z21 + Z23, 

A, = H z4,11 + Ilz3=[I = Ilz,zll + l} z3~il + ]}z,211 

and we have, from (8), 

II z4,11 = It z,2[I + 11~,211 

= IIz,211 + IIz,,ll + II z,311, 

Thus, z~2 = z43 = 0 and (5) gives that zn = z34 = 0. Therefore 

A~pl = z3~ + z41, 

- A~p2 = z32+ z42, 

giving that 
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x , ( p , -  p~) = (z~, + z~) + (z,, + z,:) 

-- Z 3 4 -  Z43 

= G, 

and we can conclude that pl = p2 as required. 

PROOF OF (ii). S being w* compact, the cone S is locally compact. Moreover, 

as a simple consequence of Theorem 1.1 (see lemma 2.1 in [4]), S has the Riesz 

decomposition property and hence the directed vector space S -S  has the Riesz 

interpolation property by proposition I1.3.1 in [1]. By proposition 11.3.2. in [1], 

S-S  is a vector lattice, i.e. S is a simplex. 
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